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1. Introduction

Topological excitations play crucial roles for understanding the properties of various sys-

tems in condensed matter physics and particle physics. For example, O(2) spin system in

two-dimension is equivalent to a vortex ensemble interacting by two-dimensional Coulomb

potential; it shows a second order phase transition from a system composed of vortex dipoles

to a vortex plasma as temperature increases. This is known as the Berezinskii-Kosterlitz-

Thouless phase transition [1]. Another remarkable example is the three-dimensional com-

pact quantum electrodynamics (QED). It can be described by an equivalent interacting

magnetic monopole ensemble and shows a crossover as a function of the coupling constant

e [2]. As a result, the area law of the Wilson loop, or the confinement of the fundamental

charge, persists for arbitrary value of e.

Moreover, the instanton ensemble have succeeded in illustrating many features of the

vacuum of four-dimensional quantum chromodynamics (QCD) and its hadronic observ-

ables [3]. Most importantly, it provides a qualitative understanding of the spontaneous

breaking of chiral symmetry in the QCD vacuum as well as a possible mechanism of its

restoration at finite temperature: numerical calculations in the instanton liquid model

show that the chiral restoration corresponds to a transition from an unpaired instanton

plasma at low temperature to instanton-antiinstanton molecules at high temperature in

the physical case of up, down and strange quarks [4].

Recently, it was shown in the Ginzburg-Landau approach to three-flavor dense QCD [5,

6] that the interplay between the quark-antiquark pairing (chiral condensate) and the

quark-quark pairing (diquark condensate) originating from the instanton-induced interac-

tion may lead to a smooth crossover between the hadronic phase and the color supercon-

ducting (CSC) phase [7]. If such a crossover is realized, the coexistence phase of the chiral
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and diquark condensates extends to the region of high baryon density. However, the dy-

namical roles of the instanton ensemble in such a system have not been fully studied in

the literatures except for a seminal work on the instanton description of two-flavor color

superconductivity (2SC) [8]. It was shown in ref. [8] that the low-energy dynamics of two-

flavor dense QCD can be described by a nonideal instanton ensemble weakly interacting

by exchanging the η mesons due to the fact that the system of instantons is dilute and the

U(1)A symmetry is asymptotically restored at high density. In such a case, the η meson

can be regarded as the lightest asymptotic Nambu-Goldstone (NG) boson. By rewriting

the low-energy effective Lagrangian of the η meson in the Coulomb gas representation via a

duality mapping, two-flavor dense QCD reduces to an instanton ensemble where instantons

(antiinstantons) interact with each other by four-dimensional Coulomb potential generated

by topological charges.

In the present paper, we will generalize the idea of ref. [8] to three-flavor QCD: We

will first provide a complete derivation and its justification of the instanton description of

three-flavor dense QCD which was partially suggested but was not fully explored in ref. [8].

Then we will investigate the properties of the instanton ensemble using the renormalization

group approach and show that the instanton ensemble behaves as a screened and unpaired

plasma. Thus, the chiral condensate inevitably exists even at high baryon density regime.

This is consistent with the previous finding in refs. [5, 6] and constitute a dynamical

demonstration of the coexistence of the chiral and diquark condensates at high density.

Throughout this paper, we will limit ourselves to three-flavor quark matter with two

light degenerate up and down quarks (mu = md = mud) and a medium-heavy strange

quark (ms > mud) at zero temperature and at finite baryon density.1 We remark here

that the light η′ meson and the diluteness of instantons enable us to treat the instanton

calculations under analytical control at high baryon density: This is not the case in the

vacuum and at finite temperature where the assumption of the random instanton liquid

needs to be introduced [3].

The paper is organized as follows. In section 2, after describing the instanton ensemble

of three-flavor dense QCD, we derive analytical formulas for the instanton density, the

topological susceptibility and a dense version of the Witten-Veneziano relation. In section 3,

we show that the system of instantons at high baryon density always behave as a screened

and unpaired plasma by using the renormalization group approach. Also we illustrate that

the chiral condensate induced by the instanton plasma is proportional to the instanton

density. Section 4 is devoted to conclusion and summary. In appendix. A, we give the

mass spectra of meson excitations at high baryon density.

2. Instanton ensemble at high baryon density

Let us consider how the low-energy dynamics in three-flavor dense QCD can be described by

a nonideal instanton ensemble weakly interacting by exchanging the η′ mesons. Although

the method employed in this section is motivated by the approach proposed in ref. [8],

1We will not consider another possibility of the exotic state called quarkyonic phase at high baryon

density [9].
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a complete derivation and its justification for not-fully-explored three-flavor case is given

here. First of all, owing to the inverse meson mass ordering, mη′ < mK < mπ < mη, which

is caused by the explicit breaking of the flavor SU(3) symmetry (ms > mud) [10], we can

focus on the low-energy effective Lagrangian of the η′ meson at high baryon density. This

ideal situation has not been realized in the two-flavor case, because only two colors (red

and green) participate in the 2SC pairing and there are not only asymptotically massless

η meson but unpaired (ungapped) blue quarks.

Our starting point is the three-flavor quark matter where the ground state is the

color-flavor locking (CFL) color superconducting phase characterized by diquark conden-

sates [11]:

〈qj
LbCqk

Lc〉 = ǫabcǫijk[d
†
L]ai,

〈qj
RbCqk

Rc〉 = ǫabcǫijk[d
†
R]ai. (2.1)

Here i, j, k (a, b, c) are flavor (color) indices and C is the charge conjugation operator. We

define the η′ meson field φ as

dLd†R =
∣

∣

∣
dLd†R

∣

∣

∣
eiφ. (2.2)

The field φ transforms as φ → φ + 4αA under the U(1)A rotation qL → e−iαAqL. The

low-energy effective Lagrangian of the η′ meson at high density is given by [12 – 14]:

L =
3

4
f2

η′

[

(∂0φ)2 − v2(∂iφ)2
]

− V (φ),

V (φ) = −aM cos(φ − θ), (2.3)

where fη′ is the decay constant of the η′ meson and v is the velocity originating from the

absence of Lorentz invariance in medium. V (φ) is the potential induced by one-instanton

contribution, ∼ Trij

[

M̂ik(d
†
LdR)kj

]

with the quark mass matrix M̂ = diag(mu,md,ms)

and “Tr” is taken over flavor indices. θ is the theta-angle, M is defined as M = TrM̂

and a is a µ-dependent parameter which we will explicitly calculate below. We neglect the

multi-instanton contributions to V (φ) since they are suppressed due to the diluteness of in-

stantons at high baryon density. It should be remarked that the term ∼ Trij

[

M̂ik(d
†
LdR)kj

]

generates not only the mass of the η′ meson but also those of other pseudoscalar mesons (π,

K and η). The contribution of the O(M̂2)-term to eq. (2.3) does not change our discussion

basically and is neglected here for simplicity. This will be considered in more detail in

appendix A.

At sufficiently large quark chemical potential compared with the typical scale of QCD,

µ ≫ ΛQCD, fη′ and v are found by matching to their microscopic values [10]:

f2
η′ =

3µ2

8π2
, v2 =

1

3
. (2.4)
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In order to obtain the explicit form of V (φ), let us start with the instanton-induced

six-fermion interaction [15, 16, 3]:

Linst = eiθ

∫

dρn(ρ)
(2πρ)6ρ3

6Nc(N2
c − 1)

ǫi1i2i3ǫj1j2j3

[

2Nc + 1

2Nc + 4
(q̄Li1qRj1)(q̄Li2qRj2)(q̄Li3qRj3)

− 3

8(Nc + 2)
(q̄Li1qRj1)(q̄Li2σµνqRj2)(q̄Li3σµνqRj3) + (L ↔ R)

]

+ h.c.. (2.5)

Here ρ is the instanton size, Nc is the number of colors, i1,2,3 and j1,2,3 are flavor indices

and σµν = i
2 [γµ, γν ]. The instanton size distribution n(ρ) is given by [17, 3]

n(ρ) = CN

(

8π2

g2

)2Nc

ρ−5 exp

(

− 8π2

g(ρ)2

)

e−Nf µ2ρ2
, (2.6)

CN =
0.466 exp(−1.679Nc)1.34

Nf

(Nc − 1)!(Nc − 2)!
, (2.7)

8π2

g(ρ)2
= −b log(ρΛQCD), b =

11

3
Nc −

2

3
Nf , (2.8)

where Nf is the number of flavors. Replacing one of q̄LqR with M̂ in eq. (2.5) and taking

the expectation value with respect to the CFL ground state (2.1), where

|dL| = |dR| =

√

6Nc

Nc + 1

µ2∆

πg
, (2.9)

with ∆ being the superconducting gap near the Fermi surface, one finds [12 – 14]:

V (φ) = −
∫

dρn(ρ)
2(2πρ)4ρ3

Nc(Nc − 1)
|dL|22M cos(φ − θ). (2.10)

The integration over the instanton size ρ above results in the form of eq. (2.3), where the

coefficient a is given by

a(µ) =
24

N2
c − 1

CNN
− b+3

2
f Γ

(

b + 3

2

)(

8π2

g2

)2Nc+1(
ΛQCD

µ

)b

µ∆2, (2.11)

with Γ(x) being the gamma function. The well-known infrared divergence in instanton cal-

culation in the QCD vacuum is not seen here since the instanton screening factor, e−Nf µ2ρ2

in eq. (2.6) [17], gives the small size ρ ∼ µ−1 of instantons and regulate the integral.

By rescaling φ → 2φ/(
√

3vfη′) and using the new coordinate x0 = vτ with the imagi-

nary time τ , the effective action of η′ in eq. (2.3) reduces to the Euclidean invariant form:

SE =

∫

d4x[(∂φ)2 − λ cos α(φ − θ)], (2.12)

λ =
a

v
M, α =

2√
3vfη′

. (2.13)

We note that the parameter α is a function of chemical potential since fη′ ∼ µ. The

instanton potential gives the η′ mass as

m2
η′ =

λ

2
α2 =

16π2a

3µ2
M, (2.14)
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where the second equation holds from the weak coupling relation, eq. (2.4). Therefore,

a → 0 as µ → ∞ from eq. (2.11) and the η′ meson is a NG boson at high baryon density

limit.

Via a dual transformation, the partition function for the action in eq. (2.12) reduces

to the following form [8]:

Z =

∫

Dφe−SE =

∫

Dφe−
R

d4x(∂φ)2eλ
R

d4x cos α(φ(x)−θ)

=

∞
∑

N±=0

(λ/2)N

N+!N−!

∫

d4x1 . . .

∫

d4xN

∫

Dφe−
R

d4x(∂φ)2ei
PN

i=0 Qiα(φ(xi)−θ), (2.15)

where the sum is taken over possible sets of N+ (N−) with positive (negative) charge

Qi = ±1 located at the position xi. In deriving the second line in eq. (2.15), we have used

the relation,

λ cos α (φ(x) − θ) =
λ

2

∑

Q=±1

eiQα(φ(x)−θ). (2.16)

Integrating over the variable φ(x) in eq. (2.15), one ends up with [8]

Z =
∞
∑

N±=0

(λ/2)N

N+!N−!

∫

d4x1 . . .

∫

d4xNe−iθ
PN

i=0 Qie−
PN

i>j=0 QiQjG(xi−xj), (2.17)

which is a Coulomb gas representation of the original sine-Gordon model. Since the θ-angle

is conjugate to the topological charge in QCD, Q =
∑

i Qi = N+−N− is identified with the

total topological charge and N+ (N−) with the number of instantons (antiinstantons). Also,

G(xi − xj) =
α2

8π2(xi − xj)2
(2.18)

is the four-dimensional Coulomb potential between instantons (antiinstantons). There-

fore, eq. (2.17) exhibits that this system is an instanton ensemble in which instantons and

antiinstantons with topological charge Qi = ±1 interact with each other by the poten-

tial G(xi − xj).

Note that we can treat our instanton calculations under completely analytical control

depending on two distinctive facts in dense QCD:

(i) Instantons are sufficiently dilute indicated by the parameter ΛQCD/µ ≪ 1, which

enables us to deal with the effects of instantons as a perturbation.

(ii) The inverse mass ordering of pseudoscalar mesons, mη′ < mK < mπ < mη [10],

guarantees that the low-energy dynamics is dominated by the η′ mesons.2 This is

the characteristics with three-flavor and can be confirmed at sufficiently large baryon

density (See eqs. (A.1)–(A.7) in appendix A).

More quantitative estimate on the domain of applicability of this instanton description

will be discussed in section 4.

2We neglect the exact massless H boson associated with the breaking of the U(1)B symmetry since its

dynamics is totally independent here and decouples from the low-energy effective Lagrangian of η′.
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2.1 Instanton density and topological susceptibility

In this subsection, we calculate quantities based on the instanton ensemble discussed above.

Multiplying N+ (N−) in the right hand side of eq. (2.15), one finds the expectation

value of the instanton (antiinstanton) number as

〈N+〉 = 〈N−〉 =
λv

2
V4, (2.19)

with four-volume V4 =
∫

dτd3x =
∫

dx0d
3x/v. This shows that the average of the topolog-

ical charge 〈Q〉 = 〈N+〉 − 〈N−〉 vanishes and the instanton density as defined below reads

ninst =
〈N〉
V4

= λv (2.20)

with N = N+ + N−. This result has been obtained in ref. [8].

Moreover, by using eq. (2.15), we generally obtain the mixed factorial moments:

〈

N+!

(N+ − k)!

N−!

(N− − l)!

〉

=

(

λv

2
V4

)k+l

, (2.21)

for arbitrary nonnegative integers k and l. eq. (2.21) implies that instantons and antiin-

stantons independently follow the Poisson distribution,

f(x) = e−β βx

x!
, (2.22)

with β = λvV4/2 = 〈N〉/2, from the fact that the n-th factorial moment of the Pois-

son distribution is equal to βn. This Poissonian behavior is usually assumed in the QCD

vacuum [3], but it can be justified at high baryon density for a dilute system of interact-

ing instantons and antiinstantons as anticipated. Also, for the topological susceptibility

defined by

χtop =
〈Q2〉
V4

, (2.23)

we have a simple relation,

χtop = ninst = λv, (2.24)

as a property of the Poisson distribution. By the use of eq. (2.24), the η′ mass in eq. (2.14)

reduces to3

m2
η′ =

2χtop

3f2
η′v2

. (2.25)

This is a dense version of the Witten-Veneziano relation [18] obtained as a natural appli-

cation of the instanton ensemble, which is not given in ref. [8].

3The topological susceptibility in eq. (2.24) and the Witten-Veneziano relation (2.25) are consistent with

the results of ref. [14] at high baryon density where the two-instanton term is negligible, though the factor

v2 in eq. (2.25) does not appear in [14]. This difference comes from the fact that our η′ mass is defined to

satisfy the dispersion relation E2 = v2(p2 + m2
η′) while that in ref. [14] is the pole mass, i.e., the energy of

η′ at p = 0, m
(pole)

η′ = vmη′ .
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3. Renormalization group analysis on instanton ensemble

In this section, we consider the possible phases of instantons at high baryon density on

the basis of the instanton description in section 2. In the following, we set θ = 0 for

simplicity since all the arguments are independent of the parameter θ. In order to explore

and compare the general properties of phase transitions induced by the D-dimensional

topological excitations (D = 2 for vortices, D = 3 for monopoles and D = 4 for instantons),

we generalize eq. (2.12) to the D-dimensional sine-Gordon model whose action is given by

SD =

∫

dDx
[

(∂φ)2 − λD cos αφ
]

. (3.1)

Here α is the parameter with the mass dimension 1 − D/2, which is introduced after

appropriate rescaling the field φ so that we normalize the coefficient of the kinetic term

to be 1.

The long-range Coulomb force between topological excitations requires effects of many-

body dynamics or quantum fluctuations. For this purpose, we shall now perform the Wilson

renormalization group (RG) approach and divide φ(x) into two components, φ = φ′ + δφ

with low-momentum part 0 < k < Λ′ and high-momentum part Λ′ < k < Λ respectively,

where Λ′ is smaller than Λ by an exponential factor. This RG analysis for D = 2 has

been already carried out in ref. [1], and we extend it to the case of D ≥ 3 in the following.

Considering how the small coupling λ ≪ 1 with the predominantly Gaussian fluctuations

shifts after the RG transformation, the change of the potential term can be calculated by

integrating out the momentum shell Λ′ < k < Λ as

〈cos α(φ′ + δφ)〉 =
1

2

(

eiαφ′

e−α2〈δφ2〉D/2 + c.c.
)

, (3.2)

with

〈δφ2〉D =
∑

~k

1

~k2
=

∫

dΩD

(2π)D

∫ Λ

Λ′

kD−1

k2
dk, (3.3)

where ΩD is the surface area of a unit sphere in Euclidean D-dimension. Therefore, the

form of sine-Gordon action, eq. (3.1), is preserved and changed to

SD → SD
′ =

∫

dDx
(

(∂φ′)2 − λ∗
D cos αφ′

)

, (3.4)

with the coupling constant

λ∗
D=2 = xα2/4πλD,

λ∗
D≥3 = exp

[

α2ΛD−2(xD−2 − 1)

(D − 2)2DπD/2Γ(D/2)

]

λD, (3.5)

for D = 2 and D ≥ 3 respectively. Here we define the renormalization scale x = Λ′/Λ < 1.

At the same time, the kinetic term (∂φ′)2 is effectively reduced by the factor of x2 < 1

independent of the dimension D, since ∂µ is of order Λ and φ′ is of order Λ′.

– 7 –
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D topological excitation parameter α order of phase transition

(a) 2 vortex α ∝
√

J/T second order

(b) 3 magnetic monopole α ∝ 1/e crossover

(c) 4 instanton α = 2/(
√

3vfη′) ∼ 1/µ crossover

Table 1: Order of phase transitions of (a) two-dimensional O(2) spin model with the nearest

neighboring interaction J [1], (b) three-dimensional compact QED with the coupling constant e [2]

and (c) four-dimensional dense QCD with quark chemical potential µ. In each case, D-dimensional

(D = 2, 3, 4) sine-Gordon model is equivalent to an ensemble of Coulomb-like interacting topological

excitations. Parameters α to exhibit phase transitions are also shown.

The systems described by the D-dimensional (D = 2, 3, 4) sine-Gordon model are

summarized as follows: (a) two-dimensional O(2) spin model with the nearest neighboring

interaction J [1], (b) three-dimensional compact QED with the coupling constant e [2], and

(c) four-dimensional dense QCD with quark chemical potential µ. They are respectively

equivalent to an ensemble of vortices, magnetic monopoles and instantons interacting by

the D-dimensional Coulomb potential. The resultant orders of phase transitions are sum-

marized in table. 1. The parameter α in each case is also given.

3.1 Case (a): two-dimensional O(2) spin model

As a pedagogical demonstration, we first recall the case (a) and consider which is over-

whelming after the RG transformation, the potential term or the kinetic term in accordance

with ref. [1]. From eq. (3.5), when α2/4π > 2, the potential term is suppressed by fluctu-

ations so quickly that it is irrelevant compared to the kinetic term. Therefore, the system

can be described only by the spin wave in this case. In the language of the Coulomb

gas representation, this corresponds to an insulating phase where vortex and antivortex

occur in pairs. Otherwise, i.e., α2/4π < 2, the potential term takes over the kinetic term

regardless of the initial value of λ and the system is locked in one of the cosine minima

φ = 2πn/α with integer n. This corresponds to a plasma phase where the Coulomb poten-

tial is screened by the free vortices. As a result, the system changes from vortex dipoles to

a vortex plasma on reaching α2/8π = 1 as temperature increases. Also we can easily check

that the transition temperature Tc = J/8π is identical to the prediction obtained from the

interplay between the free-energy and the entropy of the vortex ensemble [1].

3.2 Case (b): three-dimensional compact QED

For D ≥ 3, on the other hand, the kinetic term ∼ x2 vanishes while the potential term λ

remains finite in the limit x → 0, unlike λ also vanishes for D = 2. This originates from

the fact that the integral in eq. (3.3) is infrared divergent only for D = 2, but is finite

for D ≥ 3. Therefore, the kinetic term is more suppressed than the potential after the

RG transformation and topological excitations for D ≥ 3 always behave as a screened and

unpaired plasma.

As a result, in the case (b), the magnetic monopoles resides in a screened plasma phase

and show a crossover as a function of the coupling constant e. Since the area law of the

– 8 –
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Wilson loop can be proven for the strong coupling limit e ≫ 1, it leads to a well-known

conclusion that the confinement of the fundamental charge persists for arbitrary value of

e in the three-dimensional compact QED, which was first shown in ref. [2].

3.3 Case (c): four-dimensional QCD at finite baryon density

Let us now turn back to the pending question of our interest, whether the system of

instantons acts as an instanton plasma or they couple into molecules in the case (c). In

an analogous fashion to the previous subsection, we find that the system of instantons

always behaves as a screened and unpaired plasma and shows a crossover as a function

of fη′ ∼ µ. Since unpaired instantons induce the formation of quark-antiquark pairing

and give nonvanishing chiral condensate, our result implies that the chiral condensate will

remain finite in the region of high baryon density.4

More quantitatively, we can calculate the chiral condensate in relation to our instanton

ensemble. The minimum of the potential V (φ) in eq. (2.3) is given at φ = θ:

V (φ)min = −aM. (3.6)

Differentiating this energy with respect to M , one obtains the chiral condensate as

〈q̄q〉csc = −a = −ninst

M
, (3.7)

where we have used eqs. (2.13) and (2.24). eq. (3.7) is a novel relation connecting the

chiral condensate to the instanton density in dense QCD. Since the instanton density

rapidly decreases at high baryon density like ninst ∝ λ ∼ µ1−b with b = 9 for Nc = Nf = 3

from eqs. (2.8) and (2.11), the chiral condensate is highly suppressed (but remains finite)

like 〈q̄q〉csc ∼ µ1−b.

This is a remarkable consequence, since previous studies using three-flavor effective

model calculations such as the Nambu-Jona-Lasinio (NJL) model [20] and the random

matrix model [21], exhibit the pure CSC phase without the chiral condensate is realized

at high baryon density. This difference comes from the fact that they neglect the effects

of instantons in the CFL ground state, which would be a trigger of the chiral condensate.

Actually, the coexistence phase of the chiral and diquark condensates at high baryon density

has been recently reported based on the model-independent Ginzburg-Landau approach

taking into account the instanton effects properly [5, 6]. The important point there is that

the instanton-induced interaction composed of the chiral and diquark condensates:

Lext = γTr[(dRd†L)(q̄RqL) + h.c.], (3.8)

acts an external field for the chiral condensate and leads to a chirally broken crossover

between the hadronic phase and the CSC phase. Our result of the coexistence phase

4The application of our argument here to two-flavor QCD is not straightforward, since there are not

only light η mesons but nearly massless unpaired blue quarks in the 2SC phase, as mentioned in section 2.

However, the instanton liquid model with two-flavor shows a tendency towards chiral restoration by forming

instanton molecules at high baryon density [19].

– 9 –
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at high baryon density is totally consistent with this observation due to the same origin

of instantons.

It should be remarked that the chiral condensate in dense QCD is proportional to the

instanton density in eq. (3.7), which is in contrast with the case of the QCD vacuum with

Nf ≥ 2 where the chiral condensate is expected to behave as [3]

〈q̄q〉vac ∝ −n
1/2
inst

ρ
. (3.9)

This difference can be understood as follows: The spontaneous breaking of chiral symmetry

in the QCD vacuum is a collective phenomena caused by the effect of infinitely many

instantons, and the chiral condensate must be determined from self-consistent relations,

which finally results in eq. (3.9) [3]. On the other hand, in the case of dense QCD, chiral

symmetry is broken by a single instanton effect thanks to the presence of diquarks as shown

in eq. (3.8), and it is anticipated that the chiral condensate is proportional to the number

of instantons N in a four-volume V4, i.e., the instanton density ninst.

4. Discussion and conclusion

In this paper, we have studied the properties of an instanton ensemble in three-flavor dense

QCD which can be regarded as an instanton plasma weakly interacting by exchanging the η′

mesons. Based on this description, we derive analytical formulas for the instanton density,

the topological susceptibility and a dense version of the Witten-Veneziano relation. We also

explore the chiral phase transition induced by the instanton ensemble in analogy with the

Berezinskii-Kosterlitz-Thouless transition. We generally show that the system of Coulomb

interacting D-dimensional topological excitations exhibits a second order phase transition

for D = 2, and a crossover for D ≥ 3 using the renormalization group approach. In

particular, for D = 4, the instanton ensemble always behaves as a screened and unpaired

plasma, which gives nonvanishing chiral condensate proportional to the instanton density

at high baryon density regime of QCD. Therefore, the coexistence phase of the chiral and

diquark condensates is inevitably expected in dense QCD as suggested in refs. [5, 6].

The discussion on the applicable domain of the instanton description introduced above

is in order here. Our treatment is based on the low-energy effective Lagrangian of the η′

meson, eq. (2.3), which is valid when two conditions on the η′ pole mass are satisfied: (i)

mη′ . 2∆, and (ii) mη′ . mπ,K,η. The condition (i) is required since, otherwise (mη′ > 2∆),

η′ would rapidly decay into a particle-hole pair and becomes unstable. Also the condition

(ii) is necessary to assure that we have only to focus on the low-energy effective Lagrangian

of the light η′ meson. When µ ≫ ΛQCD, mη′ ≪ 2∆ as well as the inverse meson mass

ordering, mη′ < mK < mπ < mη follows due to a ≪ 1, so that the conditions (i) and

(ii) are satisfied (See appendix A). Moreover, we find the critical chemical potential µc as

µc ∼ 10ΛQCD for mud = 5-10 MeV, ms = 150 MeV and ΛQCD = 200 MeV.

The extrapolation of the instanton-induced crossover obtained here to lower baryon

density is a nontrivial question which we cannot address within our treatment. How-

ever, it might be reasonable to expect that the system of instantons behaves as a gas-like
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weakly-correlated or a liquid-like strongly-correlated plasma across the entire span of the

density. The instanton-induced crossover may have relevance to the continuity between

hadronic phase and color superconductivity phase [23, 24] and the spectral continuity of

hadrons [6, 25] from low to high baryon densities. It would be also important to study how

the confinement-deconfinement phase transition at finite baryon density is related to the

changes in the behavior of an instanton ensemble [26].
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A. Mass spectra of meson excitations

The explicit inclusion of the O(M2)-term does not change our discussion in a substantial

way. But it is rather essential to validate the low-energy effective Lagrangian of the η′

meson, eq. (2.3), so that we can neglect other heavier meson excitations. In the case of two

light degenerate up and down quarks with a medium-heavy strange quark, flavor SU(2)

symmetry is respected but flavor SU(3) symmetry is not. Then we find the masses of pions

(π0 and π±) and kaons (K±, K0 and K̄0) to the order of O(M2) as [10, 12, 28, 29]:

mπ±,π0 =

[

2a

f2
π

mud +
8C

f2
π

mudms

]1/2

, (A.1)

mK±,K0,K̄0 = ∓m2
s − m2

ud

2µ
+

[

a

f2
π

(mud + ms) +
4C

f2
π

mud(ms + mud)

]1/2

, (A.2)

where the first term on the right hand side of eq. (A.2) is the effective modifications of

the chemical potential due to the explicit breaking of the flavor SU(3) symmetry [27]. The

coefficient C and the pion decay constant fπ have been determined from weak-coupling

calculations at high density [10]:

C =
3∆2

4π2
, (A.3)

f2
π =

21 − 8 ln 2

18

µ2

2π2
. (A.4)

On the other hand, the neutral mesons, η and η′, are unaffected by the effective chemical

potential. However, since η′ mixes with η, the diagonalization of the 2 × 2 mass matrix

– 11 –
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m2
ab (a, b = 0, 8),

m2
00 =

8C

3f2
η′

mud(2ms + mud),

m2
08 =

8
√

2C

3fη′fπ
mud(ms − mud), (A.5)

m2
88 =

8C

3f2
π

mud(ms + 2mud),

is necessary to obtain the genuine mass eigenvalues of η′. Also taking into account the

instanton contribution to η′, eq. (2.14), their masses finally turn out to be

mη′ =

[

2a

3f2
η′

M +
24C

2f2
π + f2

η′

m2
ud

]1/2

, (A.6)

mη =

[

a

3f2
π

(mu + md + 4ms) +

(

1

f2
π

+
2

f2
η′

)

8C

3
mudms

+

(

2

f2
π

+
1

f2
η′

− 9

2f2
π + f2

η′

)

8C

3
m2

ud

]1/2

. (A.7)
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[4] T. Schäfer and E.V. Shuryak, The instanton liquid in QCD at zero and finite temperature,

Phys. Rev. D 53 (1996) 6522 [hep-ph/9509337].

[5] T. Hatsuda, M. Tachibana, N. Yamamoto and G. Baym, New critical point induced by the

axial anomaly in dense QCD, Phys. Rev. Lett. 97 (2006) 122001 [hep-ph/0605018];

G. Baym, T. Hatsuda, M. Tachibana and N. Yamamoto, The axial anomaly and the phases

of dense QCD, J. Phys. G 35 (2008) 104021 [arXiv:0806.2706].

[6] N. Yamamoto, M. Tachibana, T. Hatsuda and G. Baym, Phase structure, collective modes

and the axial anomaly in dense QCD, Phys. Rev. D 76 (2007) 074001 [arXiv:0704.2654].

[7] Reviewed in M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity
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[23] T. Schäfer and F. Wilczek, Continuity of quark and hadron matter, Phys. Rev. Lett. 82

(1999) 3956 [hep-ph/9811473].

[24] K. Fukushima, Quark description of the Nambu-Goldstone bosons in the color-flavor locked

phase, Phys. Rev. D 70 (2004) 094014 [hep-ph/0403091].

[25] T. Hatsuda, M. Tachibana and N. Yamamoto, Spectral continuity in dense QCD, Phys. Rev.

D 78 (2008) 011501 [arXiv:0802.4143].

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB510%2C167
http://arxiv.org/abs/hep-ph/0103099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA796%2C83
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA796%2C83
http://arxiv.org/abs/0706.2191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA808%2C117
http://arxiv.org/abs/0803.0279
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C074012
http://arxiv.org/abs/hep-ph/9910491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB537%2C443
http://arxiv.org/abs/hep-ph/9804403
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB479%2C190
http://arxiv.org/abs/hep-ph/0001095
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C3955
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C3955
http://arxiv.org/abs/hep-ph/0012041
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C094033
http://arxiv.org/abs/hep-ph/0201189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C37%2C8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD14%2C3432
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD14%2C3432
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB163%2C46
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB203%2C140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB156%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB156%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB159%2C213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C3950
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C3950
http://arxiv.org/abs/hep-ph/9708256
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C407%2C205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C407%2C205
http://arxiv.org/abs/hep-ph/0402234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC%2C775%2C220
http://arxiv.org/abs/hep-ph/0503032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB575%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB575%2C269
http://arxiv.org/abs/hep-ph/9909574
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C82%2C3956
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C82%2C3956
http://arxiv.org/abs/hep-ph/9811473
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C094014
http://arxiv.org/abs/hep-ph/0403091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C011501
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C011501
http://arxiv.org/abs/0802.4143


J
H
E
P
1
2
(
2
0
0
8
)
0
6
0

[26] D. Toublan and A.R. Zhitnitsky, Confinement-deconfinement phase transition at nonzero

chemical potential, Phys. Rev. D 73 (2006) 034009 [hep-ph/0503256].
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